Changes in Childhood and Adolescence: Current Challenges for Physical Education
Proceedings of the 12th FIEP European Congress

Andreas Bund, Claude Scheuer (Eds.)
Andreas Bund, Claude Scheuer (Eds.)

Changes in Childhood and Adolescence: Current Challenges for Physical Education
Proceedings of the 12th FIEP European Congress
BeepShuttle: Software for assessing the cardiorespiratory fitness of children and adolescents

STEFAN KOLIMECHEV, LUBOMIR PETROV, ALBENA ALEXANDROVA, & KOSTADIN CHOLAKOV, NATIONAL SPORTS ACADEMY 'VASSIL LEVSKI', SOFIA, BULGARIA

Introduction

A higher level of cardiorespiratory fitness in childhood and adolescence is associated with a healthier cardiovascular profile and with a lower risk of developing cardiovascular diseases later in adulthood. The most valid measure of cardiorespiratory fitness is the maximal oxygen uptake (V02max). The 20m shuttle run test (20mSRT) is the most widely used test to assess the cardiorespiratory fitness of children and adolescents, and it is part of the most extensively applied health-related fitness test batteries. The creation of software to facilitate the implementation of this test would make it easier to assess the cardiovascular status of each individual. The aim of this study was to approve specific software which administers the 20mSRT, calculates the V02max in children and adolescents between the ages of 6 and 18, and classifies them in accordance with advanced international norms.

Method

A total of 63 children (31 girls and 32 boys) from London, aged from 6 to 9, participated in this study. Weight and height were measured, and the Z-scores and percentile scores for weight, height and BMI were calculated and assessed using the WHO software, AnthroPlus. We designed specialised software, ‘BeepShuttle Junior’ (2017), to improve the assessment and efficacy of the 20mSRT in children and adolescents. The ‘BeepShuttle Junior’ provides information relating to the duration of the test, current stage and shuttle, distance achieved, and speed, in addition to calculating the predicted V02max (ml/kg/min) by using the Léger et al’s equation for children and adolescents (Léger, Mercier, Gaudoury & Lambert, 1988), and V02max percentile score (PRs). In order to assess children’s V02max, the software applies the most comprehensive and up-to-date set of age-specific and gender-specific 20mSRT international norms. The statistical analyses were conducted with SPSS Statistics 19, using descriptive statistics, independent-samples t-test and Pearson correlation. Statistically significant differences between the average values were evaluated at p < 0.05, and all data in the text are presented as average ± SD.

Results

The administration of the 20mSRT by ‘BeepShuttle Junior’ is highly convenient and comprehensive, with good visualisation embodied throughout. The individual results and assessments exactly matched the interpolated normative data tables. Whilst boys performed significantly better than girls in cardiorespiratory fitness (47.71 ± 3.13 vs 45.85 ± 2.17, respectively). The results are presented in Table 1.

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>BMI (kg/m²)</th>
<th>BMI Z-score</th>
<th>V02max, ml/kg/min</th>
<th>V02max percentile score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Age, BMI, V02max and V02max percentile scores

Discussion

The 20mSRT protocol is convenient and comprehensive, with good visualisation embodied throughout. The individual results and assessments exactly matched the interpolated normative data tables. Whilst boys performed significantly better than girls in cardiorespiratory fitness (47.71 ± 3.13 vs 45.85 ± 2.17, respectively). The results are presented in Table 1.

References

45.85 ± 2.17 ml/kg/min, p < 0.05), the percentile scores were, however, similar (53.17 ± 23.64 and 53.90 ± 22.14).

Table 1. Age, BMI, BMI Z-score, predicted maximal oxygen uptake (VO₂max) and VO₂max percentile scores (Average ± SD) of all participants

<table>
<thead>
<tr>
<th>Girls (n=31)</th>
<th>Boys (n=32)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>9.01 ± 0.48</td>
<td>8.62 ± 0.72</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>18.88 ± 3.63</td>
<td>18.63 ± 3.06</td>
</tr>
<tr>
<td>BMI Z-score</td>
<td>0.92 ± 1.23</td>
<td>1.14 ± 1.29</td>
</tr>
<tr>
<td>VO₂max, ml/kg/min</td>
<td>45.85 ± 2.17</td>
<td>47.71 ± 3.13</td>
</tr>
<tr>
<td>VO₂max percentile score</td>
<td>53.90 ± 22.14</td>
<td>53.17 ± 23.64</td>
</tr>
</tbody>
</table>

A significant, negative correlation between the BMI Z-scores and VO₂max in girls and boys (-0.54, p = 0.002 and -0.44 respectively, p = 0.011) was observed.

Discussion

The 20mSRT was first described by Luc Léger with an original 1-minute protocol (Léger et al, 1988), which starts at a speed of 8.5 km/h and increases by 0.5 km/h each minute. Other variations of the test have also been developed, but the original protocol is nevertheless recommended (Tomkinson, Léger, Olds & Cazorla 2003). The administration of the 20mSRT and the accurate assessment of its results, however, might lead to some difficulties; for instance, it is hard to follow the shuttles and the speed for each individual properly when using only audio signals. Moreover, some test batteries, such as Alpha-fit and ASSO-FTB, do not refer to VO₂max, but only to the completed stages of the 20mSRT, which is not an appropriate way to compare results from different studies. Furthermore, the reference standards of the 20mSRT have gaps in their values for younger children, which makes it more difficult for assessment purposes. Our software, 'BeepShuttle Junior', however, has the following advantages: it provides immediate assessment of cardiorespiratory fitness by using audio and visual signals, and calculates and assesses results (such as VO₂max and percentile scores) of individuals between the ages of 6 and 18 in accordance with comprehensive international norms. This software can be applied for health and fitness screening, profiling, monitoring and surveillance in schools and sports clubs.

References

12th FIEP European Congress
